SSIM-inspired image restoration using sparse representation
نویسندگان
چکیده
Recently, sparse representation based methods have proven to be successful towards solving image restoration problems. The objective of these methods is to use sparsity prior of the underlying signal in terms of some dictionary and achieve optimal performance in terms of mean-squared error, a metric that has been widely criticized in the literature due to its poor performance as a visual quality predictor. In this work, we make one of the first attempts to employ structural similarity (SSIM) index, a more accurate perceptual image measure, by incorporating it into the framework of sparse signal representation and approximation. Specifically, the proposed optimization problem solves for coefficients with minimum L0 norm and maximum SSIM index value. Furthermore, a gradient descent algorithm is developed to achieve SSIM-optimal compromise in combining the input and sparse dictionary reconstructed images. We demonstrate the performance of the proposed method by using image denoising and super-resolution methods as examples. Our experimental results show that the proposed SSIM-based sparse representation algorithm achieves better SSIM performance and better visual quality than the corresponding least square-based method.
منابع مشابه
SSIM-Inspired Quality Assessment, Compression, and Processing for Visual Communications
Objective Image and Video Quality Assessment (I/VQA) measures predict image/video quality as perceived by human beings the ultimate consumers of visual data. Existing research in the area is mainly limited to benchmarking and monitoring of visual data. The use of I/VQA measures in the design and optimization of image/video processing algorithms and systems is more desirable, challenging and fru...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012